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Summary. A generalization of the single-reference coupled-cluster method, em- 
ploying the algebraic properties of the fermionic Fock space, is presented. This 
Fock-space coupled-cluster (FSCC) method is capable of providing not only the 
ground-state energy of an N-electron system, but also an important fraction of 
system's excitation spectrum, including ionization potentials, electron affinities, 
and excitation energies corresponding to N-electron singlet and triplet states. 
The FSCC method is applied to study the electronic spectra corresponding to the 
Pariser-Parr-Pople model of butadiene, hexatriene, and benzene, with the full 
configuration-interaction results taken as the reference. The problem of intruder 
states is discussed. 
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1. Introduction 

The coupled-cluster (CC) method [1] is presently, the most effective computa- 
tional tool for performing size-extensive energy calculations for many-electron 
systems [2-4]. This method uses the exponential Ansatz to generate the corre- 
lated wave function of a given N-electron state, with the reference wave function 

taken most often in the form of a single-determinantal Hartree-Fock (HF) 
function. Generalizations of the single-reference CC approach usually consider a 
manifold of reference states (the model space), and are capable of simultaneous 
determination of several energy levels. These multi-reference CC (MRCC) 
methods can be divided into two classes [5]: (i) the valence-universal MRCC 
methods [5-1 I], which require performing calculations for states with different 
numbers of electrons (N, N - l . . . . .  N - n, where n is the number of valence 
electrons), and (ii) the state-universal MRCC methods [12-17], in which the 
model space is contained entirely within the space of N-electron wave functions. 
Approaches (i) and (ii) are often referred to as the Fock-space and Hilbert-space 
MRCC approaches, respectively. This terminology is somewhat misleading, 
however. Since all the MRCC methods are expressed in the second-quantization 
language, they are implicitly defined in a Fock space (this is a vector space 



484 M. Barysz et al. 

spanned by all Slater determinants constructed from a given set of spin orbitals; 
for M spin orbitals the corresponding Fock space is of the dimensions 2M). On 
the other hand, a finite- or infinite-dimensional Fock space has the structure of 
a Hilbert space. 

There is a wealth of algebraic structures associated with a Fock space of 
dimension 2 M, including the unitary group U(M), the special orthogonal groups 
of SO(2M) and SO(2M+ 1), and the Clifford algebra C2M (see [18], and 
references therein). The U(M) group plays a very important role of the invari- 
ance group of the second-quantization formalism. In the usual approach, see 
[19], U(M) appears as the invariance group only when the vacuum state 
corresponds to the state with no electrons (this state will be hereafter referred to 
as the physical vacuum); a smaller invariance group, U(N)® U(M-N), 
emerges when a Slater determinant built of N spin orbitals is used as the vacuum 
state. In each case, the amplitudes of Fock-space operators behave as t h e  
components of tensors under the transformations from the relevant invariance 
group. It is customary to represent these amplitudes by diagrams; this compact 
graphical notation is, in various mutations, ubiquitous in the theory of many- 
particle systems. The diagrammatic language, reflecting the tensor character of 
operators' amplitudes, made possible to formulate the linked-cluster theorem 
[20]. This theorem associates the property of size-extensivity of a physical 
quantity (e.g., energy) with the requirement that unlinked (or, in general, 
disconnected) diagrams are absent from the equations that define such a quan- 
tity, see [21] for a general discussion concerning the MRCC methods. From that 
point of view, the computational methods for many-particle systems which allow 
for the appearance of disconnecting diagrams have to be dismissed as being 
non-size-extensive. The MRCC formalisms [5-17] are not U(M)-invariant (al- 
though some of them, for instance [Sa-d], are U(N)® U(M-N)-invariant); 
moreover, the tensor structures of the corresponding MRCC equations have not 
been made very transparent, making considerations of their size-extensivity quite 
involved [ 12, 16, 21]. In the case of the state-universal MRCC methods [ 12-17], 
the difficulties stem primarily from the use of the projector operators associated 
with the model space (in particular, in the case of the so-called incomplete model 
spaces). We would like to note that the appearance of projection operators in the 
second quantization is rather awkward, since these operators usually contain 
terms with up to 2M fermion (i.e., creation and annihilation) operators. It is, 
therefore, customary to circumvent the explicit use of these operators, but this is 
usually done at the expense of obscuring the tensor structure of the formalism. 

In 1985 two of the present authors (LZS and HJM) proposed a generaliza- 
tion of the single-reference CC method [22a,b] (see also later papers [22c,d]) 
which makes an extensive use of the algebraic structure of the Fock space; this 
method, called the generalized CC method in [22], will be hereafter referred to as 
the Fock-space coupled-cluster (FSCC) method. Below we summarize the char- 
acteristic features of the FSCC method, stressing differences with the MRCC 
methods [5-17]: 

(1) A quasiparticle formalism is used, with the reference wave function q~ 
playing the role of the quasiparticle vacuum. In quantum-chemical applications 
the quasiparticles are simply "particles" and "holes", but more general types of 
quasiparticles, defined through the Bogoliubov-Valatin (BV) [23] or the Fuku- 
tome-Yamamura-Nishiyama (FYN) [24] transformations, may also be consid- 
ered. The quasiparticle formalism introduced in [22a] is different from the usual 
second-quantization formalism based on the N-product concept [19]. 
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(2) The electronic Hamiltonian/~ (defined in the Fock space) is subject to 
a similarity transformation yielding the quasiparticle Hamiltonian G = ~ - 1 / ~ .  
By writing the wave operator as (2 =(2exOdx , this similarity tranformation 
is performed in two steps, where each of the component wave operators 
(~ex, ~dx) is written in the exponential form. This bi-exponential Ansatz ensures 
a complete decoupling of the excitation and the de-excitation amplitudes of the 
wave operator (2. The wave operator ~ is not subject to the intermediate 
normalization, and we thus avoid the problems discussed at length in [21] (see 
also [Sb]). 

(3) In general,/ t  does not commute with the quasiparticle-number operator 
Nq, whereas G is explicitly required to commute with Nq. This condition is the 
cornerstone of the FSCC model of electronic structure, and provides a definition 
for the notion of quasiparticles in this model - there is a one-to-one correspon- 
dence between the FSCC quasiparticles and certain eigenstates of the Hamilto- 
nian /t. In general, the number of quasiparticles becomes a quantum number 
labeling the eigenstates o f / t .  

(4) The wave operator ~ is multiplicatively separable, and there are finite 
(and independent of M) connected-diagram expansions defining the amplitudes 
of the quasiparticle Hamiltonian G. Because of (3), a certain subset of these 
amplitudes must vanish, a condition that defines the set of basic equations of the 
FSCC method (the FSCC equations). An advantage of using the quasiparticle 
formalism is that the FSCC equations are explicitly invariant with respect to the 
unitary group U'(M) which transforms the single-quasiparticle states among 
themselves. 

(5) There is no model space, and the associated projector, in the FSCC 
theory, since operator G is defined in the whole Fock space. Therefore, we prefer 
to see the FSCC method as a natural extension of the single-reference CC 
method [1] (one recovers the usual CC equations as a subset of the FSCC 
equations), rather than a method originating from a MRCC concept. For the 
sake of comparison with the MRCC methods, the U'(M)-invariant subspaces of 
the Fock space [in the case under consideration these are the (m-particle)- 
(n-hole) spaces, (mp-nh) spaces, in short] may be treated as "model spaces". 

(6) The diagonalization of the quasipartMe Hamiltonian G in the U'(M)- 
invariant subspaces of the Fock space corresponding to the number of quasipar- 
ticles equal to 0, 1, and 2 furnishes the energy of the N-electron ground state, as 
well as the excitation energies corresponding to certain classes of (N _+ n)-elec- 
tron states (n = 0, 1, 2). Because of (4), the FSCC method is size-extensive, also 
when usual approximations (see [2-4]) are applied. 

Our Fock-space approach [22] is different from that introduced by Kutzel- 
nigg in the series of papers entitled "Quantum chemistry in Fock space" [25]. 
The main difference lies in our using the quasiparticle formalism which is not 
explicitly invariant with respect to the particle-number [U(1)] and spin [SU(2)] 
symmetries. These, and other relevant symmetries, can be taken into account by 
performing a symmetry-adaptation of the algebraic equations of the FSCC 
method. This procedure is very simple in the case of the particle-number 
symmetry, see [22b,c]. The general formulation of the FSCC method [22a] allows 
for the choice of a broken-symmetry quasiparticle vacuum q, - a very useful 
concept when applications to extended systems are considered [26]. Let us make 
a general remark that insisting on the explicit enforcement of the particle-number 
and spin symmetries restricts one in the exploitation of the full algebraic 
potential of the second-quantization formalism. We would like also to point out 
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a difference between the unitary Ansatz of Kutzelnigg and Koch [25c] (see also 
[27]) and our bi-exponential Ansatz [22a] employing nilpotent algebras. 

A concise presentation of the FSCC method is given in Sect. 2 of this paper. 
In Sect. 3 we discuss applications of the simplest non-trivial variant of the FSCC 
method. This variant is similar to the valence-universal MRCC methods 
[7, 8, 10, 11] with special choices of the model spaces (with all the "particles" and 
"holes" considered active). In our study we use the Pariser-Parr-Pople (PPP) 
model [28] for simple hydrocarbons: butadiene, hexatriene, and benzene, and 
compare the FSCC results with those of the full configuration-interaction (FCI) 
method. Numerical results are given for the ground-state energies, ionization 
energies and electron affinities, and for singlet and triplet excitation energies. 
Section 4 contains a discussion of the results for the excitation energies, with a 
special emphasis put on the problem of "intruder states" [29]. We end with 
concluding remarks in Sect. 5. 

2. The Fock-space coupled-cluster method 

The theory presented below follows that of paper [22a], including some refine- 
ments introduced in [22c]. We consider a problem of finding energy levels of an 
electronic system, e.g. a molecule described in the Born-Oppenheimer approxi- 
mation. The algebraic approximation is used: an M-element (orthornormal) set 
of spin orbitals, {~bi:i = 1 . . . . .  M}, generates the 2M-dimensional fermionic 
Fock space for our problem. The electron annihilation operators, fii, and 
creation operators, 4 ; -  (~i) t, corresponding to this spin-orbital basis are defined 
as in [30]. The physical vacuum, ~0, fulfills the condition: fii~bo=0, for 
i = 1, . . . ,  M. The Fock basis corresponding to vaccum ~o, 
{~o, fii~o, fiJ~i~0 . . . .  }, spans the Fock space. Linear operators in the Fock space 
can be expressed as linear combinations of the so-called normal products of 
electron annihilation and creation operators, as exemplified by the electron-num- 
ber operator: 

and the electronic Hamiltonian for our molecule: 

/~ W + h/fii~j + 4v0 , ,  ~,k,,,. (2) 

In Eqs. (1) and (2) the Einstein summation convention is used. In Eq. (2), h~ and 
vo .~z are one-electron and (antisymmetrized) two-electron integrals, respectively; 
W is a constant term equal to the nuclear repulsion in the molecule. The 
formulas (1) and (2) are invariant with respect to the unitary transformations of 
the spin-orbital basis; these transformations form the unitary group U(M). 
Parameters W, h/, and va kt (the amplitudes of operator Jq) may be treated as 
U(M)-tensors. 

Operator (2) is the Fock-space Hamiltonian for our molecule, its spectrum 
consists of 2 M eigenvalues corresponding to states with the number of electrons 
ranging from 0 to M. This spectrum, and the corresponding eigenfunctions (in 
the present paper often referred to as "exact" or "correlated" wave functions for 
our molecule), are obtainable by applying a FCI procedure. For obvious reasons 
FCI calculations become prohibitively difficult for larger M, even for single 
levels, and other, approximate, techniques have to be developed. In practice one 
is interested only in a very small fraction of the spectrum of/~,  including the 
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energy of the N-electron ground state of the molecule, and energies of some N-, 
(N-t-1)-, (N + 2 ) - , . . .  electron states which may be considered as "excited 
states" with respect to the ground state. It is, therefore, convenient to introduce 
a new parametrization of the Fock space, based on a new vacuum state 
approximating the correlated wave function of the N-electron ground state, 7 ~. 
In general, • can be obtained by applying a unitary transformation in the Fock 
space: 

= 0 o. (3) 

Now we can define the so-called quasiparticle annihilation operators correspond- 
ing to ~b: 

b, = O~i U*, (4) 

and the usual definition of the creation operators, 6 i--- (/~)*, follows. • is now 
the quasiparticle vacuum, since ~ ~b = 0, for i = 1 , . . . ,  M (in [22] • was called 
the model vacuum). The largest group of operators U providing manageable 
algebraic expressions for b-operators in terms of a-operators is the SO(2M + 1)- 
group of the FYN transformations [24]; these transformations can mix states 
with even and odd numbers of electrons. An important subgroup of the FYN 
transformations [24] is the SO(2M)-group corresponding to the BV transforma- 
tions [23]. When acting on the physical vacuum [see Eq. (3)], a BV-operator 0 
(of the general form) produces a mixture of the Slater determinants with 
different numbers of electron pairs. 

In the present paper we restrict our considerations to a special class of the 
BV transformations - the particle-hole transformations: 

/~ = ~', (5a) 

f o r i = l  . . . .  ,N, and 

= ,~, (5b) 

for i = N + 1 . . . .  , M. In this case • is the Slater determinant built of spin 
orbitals ~b t, i = 1 . . . .  , N  (we assume that both N and M are even). The 
quasiparticles corresponding to the annihilation operators (5a) are called 
"holes", whereas those corresponding to operators (5b) are called "particles" 
(following [31] we prefer to use quotation marks to avoid the impression that 
the particles are quasiparticles). Our Fock space can now be parametrized by 
using a new Fock basis {O, 6~O, 6 J 6 ~ . . . } ,  and linear operators can be 
expressed in terms of operators /~ and b'. For instance, the Hamiltonian (2) 
now reads: 

^ A 1 k l  ^ i = q + q/6% + ½qobJ6  +  q 6,bj + 6 b, 

÷ lqijkl~kbJ~i~ I ÷ ~q/k'i~i~6X~ + -~tlUkZ6'Ek6J~i+ ltlukl6i~E~6Z, (6) 

where the q-amplitudes (antisymmetric with respect to the permutations among 
the upper and lower indices) are in a simple way related to parameters W, h/ ,  
and vukZ of Eq. (2) (see [22a]). One finds that q = and, when qJ is 
chosen as a Hartree-Fock (HF) wave function, q0 = q  u=0-  Equation (6) 
is invariant with respect to the group U'(M) of the unitary transformations 
of the single-quasiparticle states, ~-6~4~.  The groups U(M) and U'(M) are 
different subgroups of the group SO(2M) corresponding to the BV transforma- 
tions [23]. 
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The form of Eq. (6) of the Hamiltonian (2) is exactly the same as obtained 
by using the general BV transformation (in that case only the formulas for the 
r/-amplitudes need to be generalized). Of course, the particle-number operator (1) 
and the Hamiltonian (2) commute, but this property is not obvious when the 
Hamiltonian is written in the form of Eq. (6). It is important to note that in the 
case of the general BV transformation operators (1) and (6) commute, but not 
term-by-term; the term-by-term commutation of these operators is retained only 
in the case of the particle-hole transformations (5). The "particles" and the 
"holes" correspond to different eigenvalues of the pseudocharge operator [22a] 
[related to the particle-number operator (1)]; this property is used for the 
symmetry-adaptation of the FSCC method [22b,c]. 

It is seen that Hamiltonian/4 written in the form of Eq. (6) does not commute 
with the quasiparticle-number operator: 

nq = 616i~. (7) 

It means that the number of quasiparticles is not conserved during the time 
evolution of the system which was initially in the state described by the 
quasiparticle vacuum 4). The basic idea behind our FSCC method is to find a 
similarity transformation: 

G =~- 'g~ ,  (8) 

yielding a transformed Hamiltonian G which commutes with operator Nq. The 
operator G which fulfills this condition can be written in the following form: 

= g + g/6i~. + ¼g,Tk'/~6q~k61 + ' "  . (9) 

In Ref. [22], operator G was called the effective Hamiltonian; however, since this 
name is most often used for a Hamiltonian restricted to some modelspace, in the 
present paper the name quasiparticle Hamiltonian is used for G. Due to a 
well-known property of similarity transformations, the spectra of operators/~ and 
(~ are identical. We choose the wave operator f] such that 0 ~  = 7/; in this case 
one finds from Eq. (9) that g = (4)1G~b)= E, where E is the energy of our 
N-electron ground-state wave function 7 ~. In general, the spectrum of the 
quasiparticle Hamiltonian (9) can be found step-by-step by diagonalizing this 
operator in subspaces corresponding to the number of quasiparticles equal to 
0~ 1, 2 . . . . .  M [these subspaces are the U'(M)-invariant subspaces of the Foek 
space]. When the quasiparticles are defined through transformation (5), operator 
(9) can be diagonalized in the mp-nh subspaces, where m and n correspond to the 
number of "particles" and "holes" respectively. Operator (G - g) supplies directly 
the excitation spectrum of our system, including excitations changing the number 
of electrons in the system. The interpretation of the g-amplitudes of this operator 
is as follows: matrix {g/}, after diagonalization, gives the quasiparticle energies. 
In the case when our quasiparticles are simply "particles" and "holes", this matrix 
is block-diagonal, with the lp-Oh and Op-lh blocks corresponding to certain 
electron affinities and ionization energies of the system, respectively. Matrix {goY} 
describes the two-body quasiparticle interactions; it splits into three submatrices 
corresponding to 2p-Oh, Op-2h, and lp-lh subspaces. The matrix elements of the 
last block are necessary for calculating the excitation energies correspond- 
ing to the "singly excited" states. One should note that, in general, n-body 
quasiparticle-interaction terms (2~<n ~<M) are present in the quasiparticle 
Hamiltonian (9). However, the first three terms on the rhs of Eq. (9), if known 
exactly, are sufficient to generate the ground-state energy and a part of 



Fock-space coupled-cluster method, model =-electron systems 489 

molecular excitation spectrum which is important from the point of  view of 
molecular spectroscopy. The "renormalization" procedure transforming the elec- 
tronic Hamiltonian (2, 6) into the quasiparticle Hamiltonian (9) is the essence of 
the FSCC method introduced in [22a]. As seen, this method effectively converts 
the many-electron problem associated with Hamil tonian/1 into a few-quasiparti- 
cle problem of Hamiltonian G. 

The universal [25b] wave operator (2 of the FSCC method is constructed as 
follows: 

= ~ x  ~?~x, (10) 

where 

and 

Oe~ = exp(63), (11) 

f2ax = exp(2), (12) 

1 I ,2k ^ ' ~ i  l lCk y~i 6? = ½0ij6J6i+g0uk b t/b ~ +~Osj~zf b ~b  + . . . ,  (13) 

Operators 0 and ~ are called the CC excitation and de-excitation operators, 
respectively. Operator 63, by design, contains only terms in which the number of  
the creation operators is greater than that of the annihilation ones; the opposite 
rule applies to operator ~. Because of the definition (10), it is convenient to 
perform transformation (8) in two steps. In the first one, the auxiliary quasipar- 
ticle Hamiltonian: 

is obtained, and then, in the second step, the proper quasi-particle Hamiltonian, 
G, is calculated: 

d = f2Y2 Ff]ex, (16) 

In Ref. [22a] we found that in order to obtain operator G in the form of Eq. (9), 
the amplitudes of operator: 

1 ~ j ^ i  1 i j  ~ f = 7 + 7 / 6 ~  + ~Tijb b + ~y bibj 
~- l ~ijkl~J'~i~kbl ~- l ~ijk I~k~j~i~ 1 -~ l v i Jk '~ i~bk~  

-+- ~Ti)iclbt61c626i÷ ~4y/Jki/~.~k6, + " "  , (17) 

should fulfill the following conditions: 

7u=0, (18a) 

7ijkl = 0 ,  7¢k / = 0, ( 1 8b) 

~ijklm = O, ~ijklm n = 0, 7~k/m~ = 0, (18c) 

etc. We would like to note that the conditions (18) involve only the 7-amplitudes 
with the number of the lower indices greater than the number of the upper 
ones. In [22a] we also proved that when Eqs. (18) are satisfied, one automatically 
gets: 

g = 7  = E ,  (19a) 

g~ = 7/, (19b) 

g kl = 70k/, (19c) 
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etc. Thus, the quasiparticle Hamiltonian G of the form given in Eq. (9) can be 
directly obtained from the auxiliary quasiparticle Hamiltonian (17). Therefore, 
as far as the energy spectrum of the Hamiltonian /-? is concerned, there is no 
need to know that de-excitation operator ~ of Eq. (14). This general result [22a] 
has been later found valid also in applications of valence-universal MRCC 
methods [8h, l lb]. However, the knowledge of operator ~ is necessary to 
calculate molecular properties such as expectation values and transition moments 
[22d]. The bi-exponential Ansatz (10-14) provides an explicit decoupling of the 
excitation and de-excitation CC amplitudes in the FSCC method. This Ansatz 
offers a convenient solution to the problem of finding a proper normalization of 
the wave operator in the MRCC methods. This problem is far from being trivial, 
since some normalization conditions (including the most popular intermediate 
normalization) are not compatible with the requirement of the size-extensivity of 
MRCC formalisms [21]. 

To calculate operator ff one has to find the CC excitation operator 6? of Eq. 
(13), with the 0-amplitudes chosen such that conditions (18) are satisfied. In 
[22a] (and, in a more detailed form, in Ref. [22c]) we developed an algebraic-di- 
agrammatic technique for performing similarity transformations in Fock space, 
such as that defined in Eqs. (15) and (11). To apply this technique, one first 
expresses operator (11) using the Lindgren exponential Ansatz [9a]: 

f~ex = {exp(7~) }, (20) 

where operator i~ has exactly the same structure as operator 0,  with r-ampli- 
tudes of operator 7 ~ replacing the 0-amplitudes of operator O. Actually, in [22c] 
(see also a preliminary formulation in [22a]) we used the formalism of Jeziorski 
and Paldus [5] which allows for a rigorous algebraic formulation of Ansatz (20), 
avoiding some ambiguities of the original Lindgren proposal [9a]. We showed in 
Refs. [22a,c] that there are finite, connected formulas expressing the r-amplitudes 
of operator 7 ~ in terms of the 0-amplitudes of operator O. We showed also how 
to express^the 7-amplitudes of operator F dir~tly through the q-amplitudes of 
operator H, and the ~-amplitudes of operator T; the resulting formulas have the 
form of (finite) connected-diagram expansions. Using the above results one finds 
that Eqs. (18) constitute a set of coupled nonlinear algebraic equations for 
(unknown) ~-amplitudes; we call these equations the FSCC equations. In [22, 26] 
we considered the 0-amplitudes as unknowns (the corresponding equations were 
called the generalized CC equations); however, such a formulation is less 
advantageous than the present one (see below). We would like also to note that 
in the approximate variants of the FSCC method considered in [22b,d] there is 
practically no difference between the r- and 0-amplitudes. 

The FSCC equations can be conveniently arranged in a triangular structure 
shown in Eqs. (18): the columns correspond to the number of the upper indices 
(0, 1, 2 . . . .  ), and the rows to the total number of indices (2, 4, 6 . . . .  ). It is to be 
noted that the number of these equations is equal to the number of unknowns 
(the r-amplitudes). The replacement of the 0-amplitudes by the r-amplitudes as 
the unknowns in the FSCC equations results in a more decoupled structure of 
these equations. For instance, the equations of the first column of Eq. (18) 
become decoupled from the remaining ones; these equations are equivalent to the 
T l-, T2-, T3-, . . .  equations of the single-reference CC method [2-4]. It can be 
shown in general that with the r-amplitudes as the unknowns the equations in 
the m-th column of Eqs. (18) are decoupled from those in the n-th column, for 
n > m. When the first three columns ofEqs. (18) are solved exactly, the resulting 
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y =  o ,  y ~ J - -  , y~J-- , 

- q j  : , r i j k t  : , - r i j k  t :  

e t c .  

, e t c .  

Fig. 1A-C. A diagrammatic 
representation of operators' 
amplitudes: A q-amplitude of 
Hamiltonian /~ [see Eq. (6)]; 
B ?-amplitudes of the 
auxiliary quasiparticle 
Hamiltonian f [see Eq. (17)]; 
C z-amplitudes of the CC 
excitation operator 1 ~ [see 
Eq. (20)] 

r-amplitudes are sufficient to calculate the exact values of the g-amplitudes 
corresponding to the first three terms on the rhs of Eq. (9). 

The FSCC equations may be written in a compact diagrammatic form using 
Hughenholtz-type diagrams [20b] of Fig. 1 (for details the reader is asked to 
consult [22a,c]). In Fig. 2 we present the diagrammatic FSCC equations (18a) 
and (18b). These equations correspond to a special choice of the reference wave 
function q~ as the Brueckner (maximum overlap) determinant with respect to the 
exact ground-state wave function ~ (for iterative determination of Brueckner 
orbitals within the CC method, see [32] and [22b]). By optimizing • to become 
the Brueckner determinant one gets: 

Oij = % = 0, (21) 

thus eliminating many terms in the FSCC equations. The y-amplitudes which 
determine the first three terms of the quasiparticle Hamiltonian (9) [see Eqs. 
(19)] are shown in Fig. 3. 

In the simplest non-trivial approximate variant of the FSCC method [22b] 
one solves the FSCC equations depicted in Fig. 2. In order to decouple these 
equations from the rest of the FSCC equations, one has to neglect the terms with 
the numbers enclosed in the square brackets; this leaves the z-amplitudes rljk~ and 
~k t as the only unknowns. In principle, one has also to adjust the occupied spin 
orbitals Such that Eq. (18a) (see also Fig. 2A) is fulfilled. Once the FSCC 
equations of Fig. 2 are solved, the g-amplitudes of the quasiparticle Hamiltonian 
(9) are calculated according to equations depicted in Fig. 3 (again, the terms 
with the numbers in the square brackets are neglected). This variant of the FSCC 
method will be employed in the subsequent section. 
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Fig. 2A-C.  A diagrammatic form of the FSCC equations: A 7~ = 0 [Eq. (18a)]; B 7,~kl = 0 [the first 
of Eqs. (18b)]; C ,tok/= 0 [the second of Eqs. (18b)] 



Fock-space coupled-cluster method, model g-electron systems 

A 
[] = • 

I 

+ 

493 

= + + + 

3 4 

+ 

LSJ 

+ 

[9] [~] 

Fig. 3A-C. Diagrammatic 
expressions defining the 
g-amplitudes of the 
quasiparticle Hamiltonian 
[see Eqs. (19)]: A y ( = g = E ) ;  
B 7 / (  = g / ) ;  C yi] kl ( =ggi kl) 

3. FSCC and FCI calculations for model n-electron systems 

The PPP model [28] of n-electron systems provides a convenient testing ground 
for many-body theories (see, for instance, [33]). We performed calculations for 
trans-butadiene, all-trans-hexatriene, and benzene using the parametrization of 
Schulten et al. [34]. The resonance-integral formula: 

fl(r,,) =/~0 + 3.21(r,, - 1.397) (22) 

was used, where r,, is a nearest-neighbor distance in ~, and the energy unit is eV. 
For the two-electron integrals the Mataga-Nishimoto (MN) formula [35] was 
used. The values of the carbon atom effective ionization potential I0, the 
resonance integral fl0, the one-center two-electron integral 70, and the nearest- 
neighbor distances are collected in Table 1. 

As indicated by the FCI results of [34b] (see also a previous discussion in 
[36]), the MN formula provides an enhancement of the electronic correlation 
effects in the PPP model (in comparison, e.g., with the Ohno formula [37]), a 
feature which is useful for our purpose of testing the performance of the FSCC 
method. The FCI energies for our n-electron systems were obtained by applying 
the unitary-group approach (UGA) in the atomic-orbital basis [38]. We used the 
variant of the FSCC method described in the last paragraph of the previous 
section, with the following additional simplifications: 
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Table 1. The parameters of the PPP model [34b] 

M. Barysz et al. 

I o (eV) /~o (eV) 70 (eV) r,, (~.) (C-C-C) 
a b c d e 

11.16 -2.43 11.13 1.460 (i) 120 ° 
1.350 (ii) 
1.397 (iii) 

The carbon atom effective ionization potential 
b The resonance integral 
¢ The one-center two-electron integral 
a The nearest-neighbor distances 

(i) single bonds ) d" 
(ii) double bonds~ buta lene, hexatriene 
(iii) benzene 
The angles between angles carbon-carbon bonds 

(S1) Equation (21) is assumed to hold, but ~b is in each case approximated 
by the HF determinant. It means that the Tl-equations [Eqs. (18a), see also Fig. 
2A] are not satisfied. 

($2) In Fig. 2C, diagram 5, the 7-amplitude is replaced by the corresponding 
q-amplitude [see Fig. 3B, diagram 1]; in this case the corresponding FSCC 
equations become linear with respect to amplitudes zijk t (the unknowns). 

Let us introduce indices ~, o-, r = 1, 2, . . . ,  N for the "holes", and indices r, 
s, t = N + 1 . . . . .  M for the "particles" [see Eqs. (5)]. We can now rewrite Eqs. 
(18b) as: 

7~,r, = 0, (23) 

7 ~  ~ = 0, (24a) 

7~r~' = 0, (24b) 

where only such combinations of the "particle" and "hole" indices appear which 
are allowed by the particle-number symmetry [22a-c]. Equations (23) corre- 
spond to the diagrammatic equation of Fig. 2B; the latter can be written in a 
more expanded form by using oriented lines (with arrows) to distinguish between 
"particles" and "holes". The procedure of line-orienting applied to the diagram- 
matic equation of Fig. 2C leads to two types of equations represented by Eqs. 
(24a,b). Equations (23) are identical with the CCD equations of the single-refer- 
ence CC method [3], and their solution provides amplitudes zo~rs (identical with 
the T2-amplitudes). Equations (24) are peculiar to the FSCC method; they 
provide amplitudes ~Q,r ' and zors t which are necessary for calculating the g-ampli- 
tudes of the quasiparticle Hamiltonian (9) depicted in Fig. 3B and 3C. Because 
of the simplification ($2), Eqs. (24) are linear in the unknowns. We would like 
to add that the quasiparticle Hamiltonian (9) in non-Hermitian, and in the 
present implementation of the FSCC method we used a diagonalization proce- 
dure suitable for non-Hermitian matrices. 

Below we present and discuss the results of the FCI and FSCC calculations 
for our n-electron systems: 
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FCI FSCC 
Total electronic energy (eV) 

[correlation energy (eV)] 

HF  S ~-c ~ 

a 

Butadiene 
State lag 

Hexatriene 
State lAg 

Benzene 
State ]Alg 

-78.156 -78.153 -76.775 
[-- 1.381] [-  1.378] [0.0] 

- 134.990 - 134.982 - 132.975 
[-2.0141 [ -2 .006]  [0.0] 

- 1 4 4 . 8 8 0  - 1 4 4 . 8 7 6  - 143.363 
[ -1 .517]  [ -1 .513]  [0.0] 

0.88 

0.82 

0.87 

" For definition, see Eq. (25) 

3.1. Ground-state calculations 

The FCI, FSCC, and HF total electronic energies and correlation energies for 
the ground states of the neutral molecules are given in Table 2. We provide also 
the values of quantity: 

S~c~ = I(q)[ ~)[2 (25) 

where • and 7/are the ground-state HF and FCI wave functions, respectively 
(both are assumed to be normalized). As seen, the FSCC method (equivalent in 
this case to the CCD method [3]) performs very well, reproducing 99.8, 99.6, and 
99.7% of the correlation energy for butadiene, hexatriene, and benzene, respec- 
tively. This supports the use of the simplification (S1), and indicates that 
diagrams 6-8 of Fig. 2B (corresponding to T 3- and T4-amplitudes) are unimpor- 
tant. We would like also to note that the values of parameter S~c, are quite 
large, which indicates that a one-determinantal description of the ground states 
of our molecules is satisfactory. 

3.2. Ionization energies 

The ionization energies of our molecules are shown in Table 3. In addition to the 
FCI and FSCC results, we give also the results obtained by using the Koopmans 
approximation [39]. This approximation corresponds to neglecting in Fig. 3B all 
the diagrams except diagram 1. In Table 3 we list, for each ionized state (n), the 
value of parameter: 

2 2 Sm,x = Z Ck, (26) 
k 

where Ck's are the coefficients of the FCI wave function 7J<n), corresponding to 
the 0p-lh subspace of the Fock space spanned by configurations 
{(b~} = { / ~ ;  Q = 1, 2 , . . . ,  N}. Parameter (26) provides a measure of the con- 
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Table 3. Ionization energies 

M. Barysz et al. 

FCI FSCC Koopmans 

Eigenv. AE (eV) Sma x2 aFC I (eV) S2vcl 3FC l (eV) S2cl 
a b c d e d e 

Butadiene 
State 2Bg (1) 
State 2A u (2) 

Hexatriene 
States 2A u (1) 

(4) 
State 2Bg (2) 

Benzene 
States 2Elg ( 1, 
State 2A2u (3) 

10.415 0.94 -0 .027  0.94 -0.671 0.94 
12.402 0.72 -0 .090  0.72 -0.051 0.72 

9.819 0.88 -0 .056  0.88 -0 .649  0.88 
12.528 0.59 -0 .145  0.59 0.294 0.59 
11.427 0.66 -0 .057  0.66 -0 .117  0.66 

2) 10.570 0.89 -0 .040 0.89 -0.175 0.89 
12.734 0.67 0.078 0.67 0.701 0.67 

a Eigenvalue number  in the FCI procedure 
b The FCI ionization energy 
c For  definition, see Eq. (26) 
d f i fo  = AE(method) - AE(FCI) 
e For definition, see Eq. (27) 

tainment of ~(,) in the "model space" spanned by {~k}. For the FSCC and 
Koopmans results we give also in Table 3 the values of parameters: 

$2CI  ~ - I ( ~ ( n )  ] ~/(n))]2 , ( 2 7 )  

where ~b~,) is a normalized wave function obtained by diagonalizing the quasipar- 
ticle Hamiltonian (9) in our "model space" [in the Koopmans approximation 
one replaces Hamiltonian (9) by Hamiltonian (6)]. Parameter (27) is an analog 
of that defined in Eq. (25). If, for a given state (n), the values of parameters (26) 
and (27) are very close to each other, then both the FCI and (FSCC or 
Koopmans) methods provide a very similar mixing of wave functions within the 
"model space". This is indeed the case for all the results presented in Table 3. 

As seen in Table 3, the FSCC results for the ionization energies come very 
close to the FCI ones, the largest difference being less than 0.15 eV. We would 
like to point out that in the worst case (the second state 2A, of hexatriene) also 
the value of parameter 2 Smax is small (0.59). This indicates that there is a strong 
admixture of excited ionized configurations from the outside of Op-lh space, thus 
making the contribution of diagram 5 of Fig. 3B (neglected in our FSCC 
calculations) more important in this case. 

We checked the validity of simplification ($2) by performing iterative calcu- 
lations including the full diagram 5 of Fig. 2C, but the resulting FSCC ionization 
energies changed only slightly, and mostly for the worse. 

The ionization energies calculated in the Koopmans approximation are not 
too bad, a fact which is usually attributed to a partial cancellation of the 
electronic-correlation and orbital-relaxation effects [40]. However, the orbital- 
relaxation effects are expected to be rather small for our molecules. A useful 
decomposition of an FCI ionization energy into interpretable contributions can 
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be provided by the diagrammatic equation in Fig. 3B (the corresponding 
diagrams will be denoted below by B1-B5). For instance, by using the FSCC 
results for the 2A2u ionized state of benzene we found: B1 = 13.435eV, 
B2 = 0.363 eV, B3 = 0 eV, B4 = -0.987 eV, and B5 = 0.078 eV. The value of B1 
represents the ionization energy in the Koopmans approximation. The B2- 
contribution may be called the "lost-correlation" term, since it corresponds to 
the "breaking" of those pair-correlation contributions to the ground-state corre- 
lation energy which involve the spin orbital missing in the ionized state; B2 is 
always positive. Term B3 originates from the adjustment of the HF orbitals to 
the Brueckner ones, and is expected to be small; due to the simplifications (S1) 
in the present paper this term vanishes. Contribution B4 stems form two effects: 
the orbital relaxation, and the "semi-internal" correlation [41] in the ionized 
state. The latter effect corresponds to additional electronic correlations involving 
scattering of electron pairs, in which one of the electrons fills the spin orbital 
missing in the ionized state. Since term B4 is always negative, a partial cancella- 
tion of the B2- and B4-contributions occurs. Term B5 corresponds to the change 
of the pair-correlation energies for pairs of spin orbitals which are occupied in 
the ground and the ionized state; the value of B5 given above was estimated as 
a difference between the FSCC and FCI ionization energies. 

3.3. Electron affinities 

The electron affinities calculated for our molecules are shown in Table 4; the 
form of presentation is the same as in the case of the ionization energies, see 
Table 3. For parameters (26) and (27), the "model space" corresponds now to 
the the lp-O h space. 

There is no need to discuss the results contained in Table 4 in more detail, 
since the differences between the FCI, and the FSCC and the Koopmans values 

Table 4. Electron affinities 

FCI FSCC Koopmans 

Eigenv. AE (eV) Sma x2  6FC l (eV) S~cj 6Fc J (eV) S~c l 
a b c d e d e 

Butadiene 
State 2A, (1) -0.775 0.94 -0.027 0,94 -0.671 0.94 
State 2Bg (2) 1.212 0 . 7 2  -0.090 0.72 -0.051 0.72 

Hexatriene 
States 2Bg 

State 2A u 

(1) -1.371 0 . 8 8  -0.056 0 .88  -0.649 0.88 
(4) 1.338 0 . 5 9  -0.145 0.59 0.294 0.59 
(2) 0.237 0.66 -0.057 0 .66  -0.117 0.66 

Benzene 
States 2E2, (1, 2) -0.620 0.89 -0.040 0 .89  -0.175 0.89 
State 2B2g (3) 1.544 0.67 0.078 0.67 0.701 0.67 

a, c. a, e See footnotes to Table 3 
b The FCI electron affinity 
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Table 5. Butadiene, singlet excitation energies 

M. Barysz et al. 

State FCI FSCC TDA 
symmetry 

Eigenv, AE (eV) Sma x2 ~FCI (eV) $2-c| 6FC I (eV) S2ci 
No. 
a b c d e d e 

lag (2)* 4.751 0.37 ~ 0.518 0.37~ ~ 2.115 0.37) 
(5)* 9.221 0.45 ~--3.952 0.453 ~--2.355 0.451 
(4) 8.774 0.92 --0.481 0.92 --0.507 0.92 

1B u (3) 6.731 0.96 0.050 0.96 -0.979 0.96 
(6) 10.514 0.89 -0.182 0.87 -0.624 0.86 

a. c. a, e See footnotes to Table 3 
b The FCI singlet excitation energy 
* If there are two FCI states assigned to a given FSCC (and TDA) level, the corresponding values 
of 6vo and S~- o are enclosed in curly brackets 

of  the electron affinities are the same as those for the ionization energies in Table 
3. This fact is due to the so called alternancy symmetry [42] of  the PPP model. 

3.41 Singlet excitation energies 

The excitation energies corresponding to singlet excited states of  the neutral 
systems are collected in Tables 5 (budadiene), 6 (hexatriene), and 7 (benzene). 
Besides the FCI  and FSCC results we give also the results obtained in the 
T a m m - D a n c o f f  approximation (TDA) [Be, 1 lb, 43]. The T D A  corresponds to 
performing a diagonalization of Hamiltonian (6) in the lp-lh subspace of the 
Fock space. The lp-lh space is a direct sum of two spaces spanned by the singlet 
and the triplet spin-adapted configurations, respectively; in the present case the 
former space plays the role of the "model  space" in the definitions of  the 
parameters (26) and (27). 

As seen from Tables 5 and 6, the FSCC results for the non-aromatic systems 
(butadiene and hexatriene), although generally better than the T D A  ones, are 
unsatisfactory. For instance, for the lowest excited lAg state, the FSCC values 
for butadiene and hexatriene are off by 0.518 eV and 1.031 eV, respectively. In 
these cases the values of the parameter  2 Smax are very small, being 0.37 (butadi- 
ene) and 0.30 (hexatriene) (in each of these cases it is also possible to find a FCI 
state with a higher value of 2 S . . . .  but with a much worse energy match). The 
small values of  2 Smax indicate that the lowest singlet excited states of  linear 
hydrocarbons are dominated by configurations from outside the lp-lh space. In 
fact, for butadiene as well as for hexatriene, the largest contribution to the FCI  
wave function of the lowest 1A~ state comes from the doubly excited configura- 
tion of the lowest energy. There is no doubt that in this case the contributions 
of  diagrams 7 -10  of Fig. 3C, neglected in our FSCC calculations, become 
important (a closer analysis points to diagram 9 as the most important  one). 
Similar problems occur for the lowest excited ~B u state of  hexatriene. In addition, 
for higher states of  this symmetry complex values of the FSCC energies appear; 
again, it is an indication that th6re is a serious misrepresentation of some 
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Table 6. Hexatriene, singlet excitation energies 

State FCI FSCC TDA 
symmetry 

Eigenv. 3E (eV) S2max 6Fc j (eV) S2-cl 6Fc I (eV) $2-Cl 
No. 
a b c d e d e 

lag 

i Bu 

(2)* 3.882 0.30 ~ 1.031 0.301~ ~ 1.958 0.30"~ 
(7)* 7.864 0.45 t-2.951 0.433 (-2.024 0.453 
(6) 7.526 0.87 -0.179 0.87 -0.704 0.87 
(5)* 6.146 0.16 ~ 2.003 0.12"~ ~ 3.696 0.11"~ 

(13)* 10.091 0.34 t -  1.941 0.27) ~-0.248 0.293" 
(12) 10.018 0.84 -0.329 0.82 -0.614 0.84 

(3)* 4.739 0.36 ~ 0.336 0.36~ ~ 2.159 0.36~ 
(11)* 9.388 0 .41  (-4.312 0.41J (-2.490 0.411 

(4) 5.784 0.92 -0.008 0.91 -1.084 0.92 
(8) 8.561 0.76 -0.168 0,33 -0.331 0.71 

+ 0.007i 
(10) 8.965 0.77 -0.572 0,69 -0.278 0.66 

-0.007i 
(16) 10.924 0.60 -0.535 0.52 -0.025 0.42 

~, c, d, e See footnotes to Table 3 
b See footnote to Table 5 
* If there are two FC! states assigned to a given FSCC (and TDA) level, the corresponding values 
of 6FCJ and $2c~ are enclosed in curly brackets 

Table 7. Benzene, singlet excitation energies 

State FCI FSCC TDA 
symmetry 

Eigenv. AE (eV) Sma x2 ~FCI (eV) $2ci aFC 1 (eV) $2c1 
No. 
a b c d e d e 

IB2u (2) 3.703 0.76 --0.066 0.76 1.284 0.76 

1Blu (5) 6.932 0.93 0.016 0.93 -0.646 0.92 
(15) 11.281 0.80 -0.762 0,77 0.436 0.78 

~E2g (3, 4) 5.979 0.48 0.312 0.48 2.657 0.48 
(10, 11) 9.520 0.88 -0.366 0.88 -0.294 0.88 

1E~, (6, 7) 7.138 0.89 -0.211 0.89 -0.027 0.89 

a, ~, d. e See footnotes to Table 3 
b See footnote to Table 5 

n o n - H e r m i t i a n  c o n t r i b u t i o n s  to  the  g - a m p l i t u d e s  (19c),  due  to  the  neglec t  o f  
d i a g r a m s  7 - 1 0  o f  Fig .  3C. 

T h e  F S C C  m e t h o d  p e r f o r m s  be t te r  in the  ca l cu l a t i ons  o f  s inglet  exc i t a t i on  
energies  o f  benzene  ( T a b l e  7), bu t  in this case  va lues  o f  p a r a m e t e r  2 Sma x are  
genera l ly  g rea te r  t h a n  fo r  b u t a d i e n e  a n d  hexa t r i ene ,  As  an  example ,  we m a k e  
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below a decomposition of the FCI excitation energy AE corresponding to the 
lowest ~B2, state of benzene 2 (Smax = 0.76) into diagrammatic contributions. AE 
can be expressed as a sum of the FCI ionization energy corresponding to the 2Elg 
state, equal to 10.570 eV (see Table 3), and the electron affinity corresponding to 
the 2E2, state (see Table 4), equal to -0.620eV, plus the "particle"-"hole" 
interaction terms depicted in Fig. 3C (these terms will be hereafter denoted by 
C1-C10). The FSCC estimates give: C1 = -4.614 eV (this is a "bare" interac- 
tion term of the TDA), C 2 = - 0 . 1 0 6 e V ,  C 3 = 0 e V ,  C 4 = - 1 . 4 7 6 e V ,  
C5 =0eV,  and C 6 = - 0 . 0 3 6 e V ;  an estimate of the C7-C10 contributions 
amounts to -0.015 eV in this case. It is seen that the largest correction to the 
TDA interaction term comes here from diagram C4 which depends on r-ampli- 
tudes derived from Eqs. (24). 

3.5. Triplet excitation energies 

The excitation energies corresponding to triplet excited states of the neutral 
systems are shown in Tables 8 (butadiene), 9 (hexatriene), and 10 (benzene). As 
for the singlet excitation energies, the FCI, FSCC, and TDA results are given. 
Parameters (26) and (27) are defined with respect to the "model space" spanned 
by the triplet spin-adapted lp-lh configurations. 

For butadiene and hexatriene, the FSCC results for the lowest 3Bu state are 
very good, with the errors equal to 0.073 eV and -0.036 eV, respectively; for the 
lowest 3Ag s t a t e s  the errors are larger and amount to 0.373 eV and 0.328 eV, 
respectively. The FSCC result for the lowest 3B~, state of benzene is off by 
-0.337 eV. The magnitudes of the errors of the FSCC results for higher triplet 
excited states of our molecules vary, being usually smaller for larger values of 

S m a x  • parameter 2 

Ending this section let us remark that for a PPP model of ethylene the results 
of the FSCC and FCI calculations coincide. 

Table 8. Butadiene, triplet excitation energies 

State FCI FSCC TDA 
symmetry 

Eigenv. AE (eV) Sma x 2  ~VC[ (eV) S~,cl 6vcl (eV) S~-cl 
No, 
a b c d e d e 

3B~ (1) 2.222 0.93 0.073 0.91 -0 .695 0.93 
(3)* 5.748 0.29 ~ 1.495 0.27~ ~ 1.968 0.277 
(5)* 9.920 0.70 ~-2.677 0.67) ~-2.204 0.681 

3A x (2) 3.585 0.92 0.373 0.92 --0.580 0.92 
(4) 8.609 0.97 -0.009 0.97 - 1.203 0.97 

a, c, d, e See footnotes to Table 3 
b The FCI triplet excitation energies 
* If there are two FCI states assigned to a given FSCC (and TDA) level, the corresponding values 
of  fivcJ and $2,c~ are enclosed in curly brackets 
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Table 9. Hexatriene, triplet excitation energies 
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State FCI FSCC TDA 
symmetry 

Eigenv. A E  (eV) Sma x2 OFC[ (eV) 32c1 6FC l (eV) $2c1 
No. 
a b c d e d e 

3B, 

3Ag 

(1) 1.828 0.86 -0.036 0.84 -0.653 0.86 
(3) 3.767 0.85 0.528 0.80 -0.477 0.85 
(4)* 4.752 0.20 ~ 1.683 0.17~ ~ 2.087 0.17~ 

( 11)* 8.705 0.68 1-2.270 0.60J ~- 1.866 0.633 
(9) 7.976 0.88 -0.101 0.88 - 1.078 0.88 
(6)* 6.621 0.17 ~ 2.345 0.11~ ~ 3.470 0.10~ 

(19)* 10.953 0.48 ~-1.986 0.483 (-0.861 0.483 

(2) 2.946 0.86 0.328 0.85 - 0 . 6 1 4  0.86 
(5)* 5.514 0.27 ~ 1.402 0.26~ ~ 1.822 0.26~ 
13)* 9.436 0.60 ( - 2 . 5 2 1  0.581 / - 2 . 1 0 1  0.591 
(7) 7.009 0.89 0.046 0.89 - 1.169 0.89 
15) 9.640 0.55 -0 .263  0.55 0.203 0.54 

~, o, d, ~ See footnotes to Table 3. 
b See footnote to Table 8. 
* If there are two FCI states assigned to a given FSCC (and TDA) level, the corresponding values 
of 6FCl and S~cl are enclosed in curly brackets 

4. F S C C  results for neutral excited states - a discussion 

We would like to make a few comments concerning the results of  our FCI  and 
FSCC calculations of  the singlet and triplet excitation energies (Tables 5-10):  

(i) The version of the FSCC method implemented in the present paper does 
not take into account those effects of  the orbital relaxation and electron 
correlation which are due to the simultaneous presence of a "particle" and a 
"hole" in an electronic system (these effects were also neglected in the multi- 
reference CC calculations of  excitation energies in [8e, 1 la-d]) .  Essentially, our 
approach is to calculate corrections to the TDA "bare"  interaction term (dia- 
gram I in Fig. 3C) by including only the contributions from the r-amplitudes 
found in calculations for the ground state and (N _+ 1)-electron states (diagrams 
2 - 6  in Fig. 3C). Since no convergence problems were encountered in solving 
Eqs. (23) and (24), the only source of errors can be attributed to the neglect of  
diagrams 7 -10  of Fig. 3C in our present calculations. However, the inclusion of 
these diagrams would require solving additional FSCC equations, with a very 
large number of  unknowns. 

(ii) For  the excited states with 2 Sma x > 0.7 the largest discrepancy between 
FCI  and FSCC results does not exceed 0.8 eV, being often smaller (0 .3-0.4 eV). 
In these cases the FSCC results are usually better than the TDA ones. Also the 
values of  parameters $2c~ for the FSCC and TDA methods are in these cases 

Srna.x " usually very close to that of  2 
(iii) In several cases it was difficult to make a proper assignment of  an FCI  

level to an FSCC one: we had to choose between two FCI states, and the one 
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Table 10. Benzene, triplet excitation energies 
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State FCI 
symmetry 

FSCC TDA 

Eigenv. AE (eV) 2 Sma x 6FC l (eV) $2c[ 6FC 1 (eV) $2c1 
No. 
a b c d e d e 

3Bt, (1) 2.812 0.90 -0.337 0.90 -0.236 0.90 
(7)* 7.689 0.34 ~ 1.472 0.347 ~ 3.078 0.34~ 

(24)* 12.696 0.51 L-3.536 0.51J (-1.930 0.511 

392u (6) 6.113 0.97 -0.012 0.97 -1.126 0.97 

3E1, (2, 3) 3.851 0.79 0.450 0.79 0.232 0.79 

3E2e (4, 5) 5.120 0.68 0.492 0.68 0.489 0.68 
(9, 10) 8.683 0.80 -0.043 0.80 -0.046 0.80 

a, c, ~, ~ See footnotes to Table 3. 
b See footnote to Table 8. 
* If there are two FCI states assigned to a given FSCC (and TDA) level, the corresponding values 
of @c~ and S~cl are enclosed in curly brackets 

with the lower value of  2 S,,ax gave a bet ter  energy ma tch  to the F S C C  excitat ion 
energy. These cases provide a very clear i l lustration of  the p rob lem of  " in t ruder  
s ta tes"  ([29], see also examples  discussed in [9b, 10h, 44, 45]). The two F C I  
states, say (m) and (n), affected by an " in t ruder  s ta te"  can be writ ten as: 

~J(m) = Cl C]) (m) "~ C2-A(rn), (28a) 

~V(n ) = C 3 ~b(n ) + c4A(n), (28b) 
where 7J(i), ~ , ) ,  and A~i) (i = m, n) are normalized,  and the last two wave 
functions represent  the par ts  o f  ~ , )  f rom the "mode l  space"  and f rom its 
o r thogona l  complement ,  respectively. Fo r  instance, for the lowest lAg state of  
butadiene (see Table  5, m = 2, n = 5) we found that: 

(~(2)  ]4'(5)) = 1, 

(A(2) ]A(5)) = 0.70, 

and the coefficients in the linear combina t ions  (28) read: c t = 0.61, c2 = 0.67, 
c3 = 0.79, c4 = - 0 . 7 4 .  The role of  the " in t ruder  s ta te"  is p layed in this case by 
the lowest doubly  excited configuration;  its projections onto  A(2 ) and A(5) are 
equal to 0.70 and 0.74, respectively. I t  is seen that  the " in t ruder  s ta te"  effectively 
splits a state f rom the "mode l  space"  into two F C I  states, and only one of  them 
can be described within a F S C C  or T D A  approach .  Sano and I ' H a y a  [44] 
applied a multireference per turba t ion  theory to a PPP model  of  butadiene,  and 
found a poo r  convergence of  per turba t ion  expansions of  excitation energies for 
states affected by " in t ruder  states".  The  impor tance  of  doubly-  and higher- 
excited configurat ions in the descript ion of  low-lying excited states in the PPP 
model  was studied by Kouteck~  et al. [3@ Schulten et al. [34], and Ci~ek et al. 
[46]. In the case of  linear polyenes they found that  s t rong mixing with doubly-  
excited configurat ions pushes the lowest excited level o f  symmet ry  lag below the 
lowest tBu-level. Results  o f  Refs. [34, 36, 44, 46] indicate that  the PPP model  puts 
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extreme demands on approximate methods devised for calculating the excitation 
spectra. 

(iv) In the valence-universal MRCC methods [Sd-f,j ,  9, 10, 11], in order to 
avoid problems with "intruder states", one usually considers only a few active 
"particles" and "holes"; this requires calculating additional CC amplitudes to 
decouple the active part of the Ip-lh space from the remaining part (there is, 
however, a substantial net reduction in the number of the considered CC 
amplitudes). In the case of our molecules the choice of active "particles" and 
"holes" with lowest energies (i.e., corresponding to the lowest unoccupied and 
highest occupied orbitals, respectively) would lead to a considerable reduction of 
the number of excited states taken into account [for each molecule we give the 
symmetry label and the FCI eigenvalue number (in brackets) of the surviving 
states]: butadieneJB.(3) and 3Bu(1), hexatriene-lBu(4) and 3Bu(1), benzene- 
1B2,(2), 1B1,(5), 1Elu(6, 7), and 3B2u(6), 3Blu(1), 3Elu(2, 3). In the case of the 
butadiene (see Tables 5 and 8) and hexatriene states (see Tables 6 and 9) the 
FSCC results are excellent, indicating that the decoupling of the active part of 
the lp-lh space is unimportant; in the case of benzene the active states are 
decoupled by symmetry. Therefore, our results could be compared with those of 
the MRCC methods employing the above choices of active spaces. We would 
like to note that there is no fundamental problem with modifying the FSCC 
formalism by introducing "active" and "inactive" quasiparticles. However, our 
calculations for linear hydrocarbons, butadiene and hexatriene, indicate that the 
procedure of limiting the number of active "particles" and "holes" does not 
provide a true remedy for the problem of "intruder states": too few excited levels 
are covered, and, moreover, the calculated ~Bu-states are not the lowest singlet 
excited states for these molecules, see (iii). 

(v) One may wonder to that extent the problem of "intruder states" dis- 
cussed in (iii) reflects the physics of low-lying excited states in re-electron states 
in ~-electron systems. It is well established [47] for octatetraene, as well as for 
longer linear polyenes, that the lowest excited singlet state corresponds to 
symmetry ~A, and contains a significant admixture of 2h-2p configurations. After 
some confusion regarding the ordering of the lowest ~Ag and ZB, levels in 
trans-butadiene and hexatriene (see a discussion in [48]), there is now experimen- 
tal evidence [49] that also these molecules conform to the general pattern. Thus, 
the results of the C! PPP studies by Schulten et al. [34] are now validated, at 
least at a semi-quantitative level. Let us remark that various parametrizations of 
the PPP model, such as that used in the present paper (see also [34]), are known 
to give quite good a description of excitation spectra of polyenes already at the 
TDA level. However, it is true only for some excited states, mostly those 
corresponding to the allowed transitions from the ground state (the "new" 
~A-states do not belong to this category). The FCI treatment, while bringing the 
correct ordering of lowest excited states, destroys a good quantitative agreement 
reached at the TDA level. However, Schulten et al. [34b] demonstrated that the 
FCI PPP description can be improved by adjusting the /?o-parameter and 
switching to the Ohno formula [37]. Figures 7-9 of [34b] show that the 
parametrization employing the Mataga-Nishimoto formula [35] (the same as 
used in the present paper) uses to overdraw the effects of "intruder states". We 
conclude that the present FCI PPP model is realistic at the qualitative level, and 
exaggerated at the quantitative one. 

(vi) It is important to note that the hierarchy of the FSCC equations need 
not be solved by following an order-by-order perturbation expansion: to the 
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contrary, it seems quite obvious that one would attempt to solve FSCC equations 
belonging to a given column of Eq. (18) after the pertinent subset of the FSCC 
equations from the preceding columns have been solved. In fact, in our FSCC 
calculations reported in this paper we first solved the CCD equations (23), then 
the converged amplitudes z~rs were put into Eqs. (24), and finally the remaining 
z-amplitudes were calculated. A more advanced variant of the FSCC method 
includes, in addition to Eqs. (18a) and (18b), also the FSCC equations (18c). For 
the ground state, this variant provides the description at the level of the CCSDT 
method [4b]; the FSCC ionization energies and electron affinities are also expected 
to improve because of the inclusion of diagram 5 in the formula depicted in Fig. 
3B. For the excitation-energy calculations the new variant of the FSCC method 
supplies diagrams 7-9 of Fig. 3C, which should considerably improve the results 
in the case of excited states discussed in (ii). The description of the remaining 
excited states originating from lp-lh configuration is also likely to improve, since 
the last set of Eqs. (18c) supplies the amplitudes %~r/' which are responsible for 
changing the admixture of 2p-2h configurations, some of which play the role of 
"intruder states". Computational problems are expected at that point, since in the 
case of strong mixing the pertinent z-amplitudes may become quite large, see an 
example of MRCC calculations for the 2p 2 states of beryllium in [ 10h]. Moreover, 
a nonlinear character of the corresponding FSCC equations becomes important, 
because one will need multiple solutions to account for the "level-splitting" 
discussed in (iii). It seems that "intruder states" cannot (and should not) be 
avoided at any price, and that there is a potential in such methods as the FSCC 
one to deal with this problem. 

5. Concluding remarks 

The FSCC method introduced in [22a,b] provides a natural extension of the 
single-reference CC method [1-4]. The FSCC equations (18) have a structure 
similar to the usual CC equations (in fact, the latter ones are contained in the 
hierarchy of the FSCC equations), and a comparable numerical effort is required 
for their solution. However, in addition to the ground-state energy of a molecule, 
the FSCC method enables one to calculate also an important part of the molecular 
excitation spectrum. In the present paper we show that the FSCC method, in its 
simplest version involving the FSCC equations (23) and (24), performs very well 
in the calculations of the total energies, ionization energies, and electron affinities 
of our model r~-electron systems: butadiene, hexatriene, and benzene. The FSCC 
calculations of the excitation energies (corresponding to the singlet and triplet 
excited states of the lp-lh origin) give good results for states not affected by 
"intruder states" [29]. 

It is a peculiar property of the electronic structure of re-electron systems that 
many of low-lying excited states contain large contributions of doubly- and 
higher-excited configurations [34], which play a role of "intruder states" [44]. The 
present version of the FSCC method, although in general improves upon the TDA 
[8e, 1 lb, 43], is not sufficient to give a satisfactory description of such states. We 
suggest that a more elaborate version of the FSCC method, involving Eqs. (18c) 
from the hierarchy of the FSCC equations, might be capable to deal with the 
problem of "intruder states" in such cases. The electronic spectra of ~-electron 
systems provide an example where the usual way of avoiding "intruder states" (by 
limiting the number of active "particles" and "holes") seem to be non-effective. 
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